skip to main content


Search for: All records

Creators/Authors contains: "Salganik, Evgenii"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. Low-salinity meltwater from Arctic sea ice and its snow cover accumulates and creates under-ice meltwater layers below sea ice. These meltwater layers can result in the formation of new ice layers, or false bottoms, at the interface of this low-salinity meltwater and colder seawater. As part of the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC), we used a combination of sea ice coring, temperature profiles from thermistor strings and underwater multibeam sonar surveys with a remotely operated vehicle (ROV) to study the areal coverage and temporal evolution of under-ice meltwater layers and false bottoms during the summer melt season from mid-June until late July. ROV surveys indicated that the areal coverage of false bottoms for a part of the MOSAiC Central Observatory (350 by 200 m2) was 21%. Presence of false bottoms reduced bottom ice melt by 7–8% due to the local decrease in the ocean heat flux, which can be described by a thermodynamic model. Under-ice meltwater layer thickness was larger below first-year ice and thinner below thicker second-year ice. We also found that thick ice and ridge keels confined the areas in which under-ice meltwater accumulated, preventing its mixing with underlying seawater. While a thermodynamic model could reproduce false bottom growth and melt, it could not describe the observed bottom melt rates of the ice above false bottoms. We also show that the evolution of under-ice meltwater-layer salinity below first-year ice is linked to brine flushing from the above sea ice and accumulating in the meltwater layer above the false bottom. The results of this study aid in estimating the contribution of under-ice meltwater layers and false bottoms to the mass balance and salt budget for Arctic summer sea ice.

     
    more » « less
  2. During the Arctic melt season, relatively fresh meltwater layers can accumulate under sea ice as a result of snow and ice melt, far from terrestrial freshwater inputs. Such under-ice meltwater layers, sometimes referred to as under-ice melt ponds, have been suggested to play a role in the summer sea ice mass balance both by isolating the sea ice from saltier water below, and by driving formation of ‘false bottoms’ below the sea ice. Such layers form at the interface of the fresher under-ice layer and the colder, saltier seawater below. During the Multidisciplinary drifting Observatory for the Study of the Arctic Climate (MOSAiC) expedition in the Central Arctic, we observed the presence of under-ice meltwater layers and false bottoms throughout July 2020 at primarily first-year ice locations. Here, we examine the distribution, prevalence, and drivers of under-ice ponds and the resulting false bottoms during this period. The average thickness of observed false bottoms and freshwater equivalent of under-ice meltwater layers was 0.08 m, with false bottom ice comprised of 74–87% FYI melt and 13–26% snow melt. Additionally, we explore these results using a 1D model to understand the role of dynamic influences on decoupling the ice from the seawater below. The model comparison suggests that the ice-ocean friction velocity was likely exceptionally low, with implications for air-ice-ocean momentum transfer. Overall, the prevalence of false bottoms was similar to or higher than noted during other observational campaigns, indicating that these features may in fact be common in the Arctic during the melt season. These results have implications for the broader ice-ocean system, as under-ice meltwater layers and false bottoms provide a source of ice growth during the melt season, potentially reduce fluxes between the ice and the ocean, isolate sea ice primary producers from pelagic nutrient sources, and may alter light transmission to the ocean below. 
    more » « less
  3. This dataset contains measurements of sea ice thickness along drill lines. These measurements were taken in the Central Arctic during Leg 4 of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition, July 14-29, 2020. Thickness measurements include observations of rafted ice, false bottoms, and sea ice freeboard. Measurements were made through holes in the ice made with a 2-inch sea ice drill, with thickness and features observations made using a combination of thickness tape and a snow stick adapted for the purpose. The primary aim of these observations was to capture the presence and distribution of false bottom features under the ice during the melt season. 
    more » « less
  4. The rapid melt of snow and sea ice during the Arctic summer provides a significant source of low-salinity meltwater to the surface ocean on the local scale. The accumulation of this meltwater on, under, and around sea ice floes can result in relatively thin meltwater layers in the upper ocean. Due to the small-scale nature of these upper-ocean features, typically on the order of 1 m thick or less, they are rarely detected by standard methods, but are nevertheless pervasive and critically important in Arctic summer. Observations during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in summer 2020 focused on the evolution of such layers and made significant advancements in understanding their role in the coupled Arctic system. Here we provide a review of thin meltwater layers in the Arctic, with emphasis on the new findings from MOSAiC. Both prior and recent observational datasets indicate an intermittent yet long-lasting (weeks to months) meltwater layer in the upper ocean on the order of 0.1 m to 1.0 m in thickness, with a large spatial range. The presence of meltwater layers impacts the physical system by reducing bottom ice melt and allowing new ice formation via false bottom growth. Collectively, the meltwater layer and false bottoms reduce atmosphere-ocean exchanges of momentum, energy, and material. The impacts on the coupled Arctic system are far-reaching, including acting as a barrier for nutrient and gas exchange and impacting ecosystem diversity and productivity. 
    more » « less
  5. First-year sea-ice thickness, draft, salinity, temperature, and density were measured during near-weekly surveys at the main first-year ice coring site (MCS-FYI) during the MOSAiC expedition (legs 1 to 4). The ice cores were extracted either with a 9-cm (Mark II) or 7.25-cm (Mark III) internal diameter ice corers (Kovacs Enterprise, US). This data set includes data from 23 coring site visits and were performed from 28 October 2019 to 29 July 2020 at coring locations within 130 m to each other in the MOSAiC Central Observatory. During each coring event, ice temperature was measured in situ from a separate temperature core, using Testo 720 thermometers in drill holes with a length of half-core-diameter at 5-cm vertical resolution. Ice bulk practical salinity was measured from melted core sections at 5-cm resolution using a YSI 30 conductivity meter. Ice density was measured using the hydrostatic weighing method (Pustogvar and Kulyakhtin, 2016) from a density core in the freezer laboratory onboard Polarstern at the temperature of –15°C. Relative volumes of brine and gas were estimated from ice salinity, temperature and density using Cox and Weeks (1983) for cold ice and Leppäranta and Manninen (1988) for ice warmer than –2°C.The data contains the event label (1), time (2), and global coordinates (3,4) of each coring measurement and sample IDs (13, 15). Each salinity core has its manually measured ice thickness (5), ice draft (6), core length (7), and mean snow height (22). Each core section has the total length of its top (8) and bottom (9) measured in situ, as well estimated depth of section top (10), bottom (11), and middle (12). The depth estimates assume that the total length of all core sections is equal to the measured ice thickness. Each core section has the value of its practical salinity (14), isotopic values (16, 17, 18) (Meyer et al., 2000), as well as sea ice temperature (19) and ice density (20) interpolated to the depth of salinity measurements. The global coordinates of coring sites were measured directly. When it was not possible, coordinates of the nearby temperature buoy 2019T66 were used. Ice mass balance buoy 2019T66 installation is described in doi:10.1594/PANGAEA.938134. Brine volume (21) fraction estimates are presented only for fraction values from 0 to 30%. Each core section also has comments (23) describing if the sample is from a false bottom, from rafted ice or has any other special characteristics.Macronutrients from the salinity core, and more isotope data will be published in a subsequent version of this data set. 
    more » « less
  6. This dataset contains upper ocean temperature and salinity profiles made during July – September, 2020 as part of the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition in the Central Arctic. The primary aim of these profiles was to capture the stratification of the upper ocean due to meltwater input throughout the summer melt season and the transition to fall freeze-up. The dataset includes data from two instruments: (i) YSI probe, and (ii) Sontek Castaway. The YSI probe was used to take point measurements of temperature and salinity, allowing for more fine-scale profiles in the upper couple of meters. The Sontek Castaway is a small conductivity, temperature, and depth (CTD) device that was used to make profiles over the upper 10s of meters, here typically in complement to the YSI observations, and are processed to 15 centimeters (cm) vertical resolution. Profiles were made in two primary locations: (i) near-surface of leads surrounding the sea ice floe, using both YSI and Castaway, and (ii) upper ocean directly beneath the sea ice, typically using YSI only. A small number of additional observations were made in coincident melt ponds and the upper ocean directly underneath. Details of collection and processing methods, including quality control for both instruments, can be found in data archive descriptions. 
    more » « less
  7. Year-round observations of the physical snow and ice properties and processes that govern the ice pack evolution and its interaction with the atmosphere and the ocean were conducted during the Multidisciplinary drifting Observatory for the Study of Arctic Climate (MOSAiC) expedition of the research vessel Polarstern in the Arctic Ocean from October 2019 to September 2020. This work was embedded into the interdisciplinary design of the 5 MOSAiC teams, studying the atmosphere, the sea ice, the ocean, the ecosystem, and biogeochemical processes. The overall aim of the snow and sea ice observations during MOSAiC was to characterize the physical properties of the snow and ice cover comprehensively in the central Arctic over an entire annual cycle. This objective was achieved by detailed observations of physical properties and of energy and mass balance of snow and ice. By studying snow and sea ice dynamics over nested spatial scales from centimeters to tens of kilometers, the variability across scales can be considered. On-ice observations of in situ and remote sensing properties of the different surface types over all seasons will help to improve numerical process and climate models and to establish and validate novel satellite remote sensing methods; the linkages to accompanying airborne measurements, satellite observations, and results of numerical models are discussed. We found large spatial variabilities of snow metamorphism and thermal regimes impacting sea ice growth. We conclude that the highly variable snow cover needs to be considered in more detail (in observations, remote sensing, and models) to better understand snow-related feedback processes. The ice pack revealed rapid transformations and motions along the drift in all seasons. The number of coupled ice–ocean interface processes observed in detail are expected to guide upcoming research with respect to the changing Arctic sea ice. 
    more » « less